Plants and Vegetation Origins, Processes, Consequences

Plants make up 99.9 percent of the world's living matter, provide food and shelter, and control the Earth's climate. The study of plant ecology is therefore essential to understanding the biological functions and processes of the biosphere. This vibrant new introductory textbook integrates important classical themes with recent ideas, models, and data.

The book begins with the origin of plants and their role in creating the biosphere as the context for discussing plant functional types and evolutionary patterns. The coverage continues logically through the exploration of causation with chapters, amongst others, on resources, stress, competition, herbivory, and mutualism. The book concludes with a chapter on conservation, addressing the concern that as many as one-third of all plant species are at risk of extinction.

Each chapter is enriched with striking and unusual examples of plants (e.g., stone plants, carnivorous plants) and plant habitats (e.g., isolated tropical tepui, arctic cliffs). Paul Keddy's lively and thought-provoking style will appeal to students at all levels.

PAUL KEDDY is the first holder of the Schlieder Endowed Chair for Environmental Studies at Southeastern Louisiana University. His current research explores the environmental factors that control plant communities, and how these factors can be manipulated to maintain and restore biological diversity. Dr. Keddy has published more than a hundred scholarly papers on plant ecology, and is designated a Highly Cited Researcher in Ecology and Environment by the Institute for Scientific Information. He is the author of *Wetland Ecology: Principles and Applications* (winner of the Society of Wetland Scientists' Merit Award) and *Competition* (awarded the Lawson Medal by the Canadian Botanical Association and the Gleason Prize by the New York Botanical Garden). Dr. Keddy also co-edited *The World's Largest Wetlands: Ecology and Conservation* and *Ecological Assembly Rules: Perspectives, Advances, Retreats.*

Plants and Vegetation

Origins, Processes, Consequences

Paul A. Keddy

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521864800

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN-13 978-0-521-86480-0 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Epigraph

The mass of vegetation on the Earth very far exceeds that of animal organisms; for what is the volume of all the large living Cetacea and Pachydermata when compared with the thickly-crowded colossal trunks of trees, of from eight to twelve feet in diameter, which fill the vast forests covering the tropical region of South America, between the Orinoco, the Amazon, and the Rio da Madeira? And although the character of different portions of the earth depends on the combination of external phenomena, as the outlines of mountains – the physiognomy of plants and animals – the azure of the sky – the forms of the clouds – and the transparency of the atmosphere – it must still be admitted that the vegetable mantle with which the earth is decked constitutes the main feature of the picture.

von Humboldt, A. 1845.

Cosmos: A Sketch of the Physical Description of the Universe. Volume 1. Translated by E. C. Otté. Foundations of Natural History. Baltimore: Johns Hopkins University Press. 1997. (Originally produced in five volumes: 1845, 1847, 1850–51, 1858, and 1862.) p. 343.

Contents

Preface	page xvii
Acknowledgements	xxii

Chapter I Plants and the origin of the biosphere

1.1	Introduction	1
1.2	Energy flow and photosynthesis	4
1.3	Membranes	10
1.4	Eukaryotic cells	11
1.5	The origin of photosynthesis	15
1.6	The oxygen revolution	18
	1.6.1 Changes in ocean chemistry	18
	1.6.2 Changes in the composition of the atmosphere	20
	1.6.3 Formation of the ozone layer	20
1.7	The Cambrian explosion of multicellular life	21
1.8	Colonizing the land	21
1.9	Plants and climate	26
1.10	Sediment and ice cores: reconstructing past climates	28
1.11	Conclusion	33
	Further reading	34

Chapter 2 Description of vegetation: the search for global patterns

2.1	Intro	duction	35
2.2	Phylo	ogenetic perspectives	36
	2.2.1	Early plant classification: Linnaeus, Bentham,	
		Hooker	36
	2.2.2	The discovery of evolution: Wallace, Darwin,	
		Bessey	38
	2.2.3	Molecular systematics and phylogeny	41
	2.2.4	The two largest families of plants: Asteraceae	
		and Orchidaceae	43
	2.2.5	World floristic regions: phylogeny and geography	46
	2.2.6	Summary and limitations	48
2.3	Func	tional perspectives	50
	2.3.1	von Humboldt, Raunkiaer, Küchler	51
	2.3.2	The classification of climate	56
	2.3.3	Limitations	58
2.4	Conc	lusion	59
	Furth	ner reading	61

viii

CONTENTS

Chapter 3 Resources

3.1	Introduction	63
	3.1.1 The CHNOPS perspective	63
	3.1.2 The costs of acquisition	67
3.2	Carbon dioxide: foraging in an atmospheric reservoir	68
3.3	Light and photosynthesis: harvesting photons	70
	3.3.1 Three measures of photon harvest	70
	3.3.2 Architecture and photon harvesting	70
	3.3.3 Different photosynthetic types	73
	3.3.4 An exception to the rule: root uptake of CO_2	75
	3.3.5 Another view of photosynthetic types	76
	3.3.6 The overriding importance of height	77
	3.3.7 Ecosystem effects: net primary production changes	
	with plant size	78
3.4	Below-ground resources	79
	3.4.1 Water	79
	3.4.2 Mineral nutrients: a single cell perspective	81
	3.4.3 Phosphorus	83
	3.4.4 Nitrogen	85
	3.4.5 Experimental tests for nitrogen and phosphorus	
	limitation	86
	3.4.6 Other sources of evidence for nutrient limitation	91
3.5	Changing availability of resources in space and time	93
	3.5.1 Small scale heterogeneity	93
	3.5.2 Resource gradients	94
	3.5.3 Resources in transitory patches	100
3.6	Resources as a habitat template for plant populations	101
3.7	Resource fluctuations complicate short-term	
	ecological studies	105
3.8	Chronic scarcity of resources and conservation	108
	3.8.1 Limitation by scarce resources	108
	3.8.2 Conservation of scarce resources	114
3.9	Soils	116
3.10	Two historical digressions	120
3.11	Humans and soil resources	121
3.12	Conclusion	123
	Further reading	125

Chapter 4 Stress

4.1	Introduction	126
	4.1.1 Definitions	126
	4.1.2 More on terminology	127
4.2	Some general consequences of stress	128
	4.2.1 Short-term effects: stress has metabolic costs	128
	4.2.2 The costs of adaptation to stress	131

CONTENTS

	4.2.3 Growth rate	134
	4.2.4 Seed size	135
	4.2.5 Clonal integration	140
4.3	Habitats with drought as the predominant stress	144
	4.3.1 Deserts	144
	4.3.2 Mediterranean shrublands	150
	4.3.3 Rock barrens	152
	4.3.4 Coniferous forests	156
4.4	Unavailability of resources	159
4.5	Presence of a regulator	162
	4.5.1 Salinity	162
	4.5.2 Cold environments: arctic and alpine examples	167
	4.5.3 Early spring photosynthesis in temperate climates	171
4.6	Extreme cases of stress tolerance	173
	4.6.1 Cold and drought tolerance of lichens	173
	4.6.2 Endolithic communities	174
	4.6.3 Flood tolerance	176
4.7	The smoking hills: a natural occurrence of stress	
	from air pollution	179
	Effects of ionizing radiation upon mixed forest	180
4.9	Moisture and temperature at different scales	182
4.10	Conclusion	184
	Further reading	185

Chapter 5 Competition

5.1	Intro	duction	186
	5.1.1	The importance of competition	186
	5.1.2	Definition of competition	187
	5.1.3	Stress, strain, and the costs of competition	187
5.2	Kind	s of competition	188
	5.2.1	Intraspecific competition	188
	5.2.2	Distinguishing between intraspecific and	
		interspecific competition	190
	5.2.3	Competition intensity	191
	5.2.4	Competitive effect and competitive response	193
	5.2.5	Competitive dominance	194
5.3	More	examples of competition	197
	5.3.1	Self-thinning	197
	5.3.2	Dominance patterns in monocultures	198
	5.3.3	Density dependence in annual plants	200
	5.3.4	The relationship between intensity and asymmetry	
		of competition	202
5.4	Com	petitive hierarchies	204
	5.4.1	Establishing hierarchies	204
	5.4.2	The consistency of hierarchies	206

x | CONTENTS

	5.4.3	Light and shoot size	209
	5.4.4	Foraging for patches of light or soil nutrients	213
5.5	Mycc	orrhizae and competition	214
5.6	Com	petition gradients	216
	5.6.1	Measuring competition intensity	216
	5.6.2	Competition intensity gradients in an old field	217
	5.6.3	Competition and cacti	218
	5.6.4	Competition intensity along a soil depth gradient	218
	5.6.5	Competition intensity gradients in wetlands	220
	5.6.6	Competition along an altitudinal gradient	220
5.7	Conc	lusion	223
	Furth	ner reading	223

Chapter 6 Disturbance

6.1	Introduction	225
6.2	Four properties of disturbance	226
	6.2.1 Duration	226
	6.2.2 Intensity	226
	6.2.3 Frequency	227
	6.2.4 Area	228
6.3	Examples of disturbance	228
	6.3.1 Fire	228
	6.3.2 Erosion	236
	6.3.3 Animals	238
	6.3.4 Burial	243
	6.3.5 Ice	249
	6.3.6 Waves	249
	6.3.7 Storms	252
6.4	Catastrophes: low frequency and high intensity	254
	6.4.1 Landslides	254
	6.4.2 Volcanic eruptions	255
	6.4.3 Meteor impacts	259
6.5	Measuring the effects of disturbance	264
	6.5.1 The Hubbard Brook study of forested watersheds	264
	6.5.2 Ottawa River marshes	268
6.6	Disturbance and gap dynamics	269
	6.6.1 Regeneration from buried seeds after disturbance	270
	6.6.2 Gap regeneration in deciduous forests	272
	6.6.3 Alluvial deposition	274
	6.6.4 Freshwater marshes	274
6.7	Synthesis: fire, flooding, and sea level in the Everglades	275
6.8	Competition, disturbance, and stress: the CSR synthesis	276
6.9	Conclusion	282
	Further reading	282

CONTENTS

xi

Chapter 7 Herbivory	
7.1 Introduction	284
7.2 Field observations on wildlife diets	286
7.2.1 Herbivores in African grasslands	286
7.2.2 Herbivorous insects in tropical forest canopies	289
7.2.3 Giant tortoises on islands	290
7.2.4 Herbivory in anthropogenic landscapes	292
7.3 Plant defenses	293
7.3.1 Evolutionary context	293
7.3.2 Structures that protect seeds: strobili and squirrels	293
7.3.3 Secondary metabolites that protect foliage	297
7.3.4 Two cautions when interpreting anti-herbivore	
traits	299
7.3.5 Food quality and nitrogen content	300
7.3.6 Coevolution: a brief preview	302
7.4 Field experiments	303
7.4.1 Herbivorous insects in deciduous forest canopies	304
7.4.2 Land crabs in tropical forest	305
7.4.3 Herbivores in grassland: the Cape Province, the	
Pampas, and the Serengeti	306
7.4.4 Effects of rhinoceroses in tropical floodplain forest	t 313
7.4.5 Large mammals in deciduous forest	313
7.4.6 Effects of an introduced species: nutria	316
7.5 Empirical relationships	318
7.6 Some theoretical context	322
7.6.1 Top-down or bottom-up?	322
7.6.2 Effects of selective herbivory on plant diversity	324
7.6.3 A simple model of herbivory	325
7.6.4 Extensions of herbivory models	327
7.7 Conclusion	332
Further reading	334

Chapter 8 Positive interactions: mutualism, commensalism, and symbiosis

8.1	Intro	duction	336
	8.1.1	Definitions	336
	8.1.2	History	337
8.2	Posit	ive interactions between plants and plants	338
	8.2.1	Nurse plants	338
	8.2.2	Stress gradients and competition	341
	8.2.3	More cases of co-operation	342
	8.2.4	Summary	345
8.3	Posit	ive interactions between fungi and plants	346
	8.3.1	Ectomycorrhizae and endomycorrhizae	346
	8.3.2	Ectomycorrhizae and forests	349

8.3.3 Mycorrhizae in wetlands	350
8.3.4 Costs and benefits of mycorrhizal associations	354
8.3.5 Lichens	355
8.4 Positive interactions between plants and animals	358
8.4.1 Animals and flowers	358
8.4.2 Animals and seed dispersal	365
8.4.3 The costs of sexual reproduction	379
8.4.4 Experimental tests of the value of sexuality	381
8.4.5 Animals defending plants	387
8.4.6 Microbes in animal guts	390
8.5 Mathematical models of mutualism	395
8.5.1 Population dynamics models	395
8.5.2 Cost-benefit models	396
8.6 Mutualism and apparent competition	398
8.7 Conclusion	399
Further reading	402
Chapter 9 Time	
9.1 Introduction	403
9.2 $>10^6$ years: the origin of the angiosperms and	
continental drift	405
9.2.1 Temperate evergreen forests	410
9.2.2 Deserts	411
9.2.3 Tropical floras	412
9.3 $>10^4$ years: the Pleistocene glaciations	418
9.3.1 Erosion and deposition by glacial ice	419
9.3.2 Loess	419
9.3.3 Pluvial lakes	422
9.3.4 Drought and tropical forests	423
9.3.5 Sea level decrease	425
9.3.6 Migration	426
9.3.7 Hominids	428
9.3.8 Flooding	430
9.4 $>10^2$ years: plant succession	431
9.4.1 Succession	431
9.4.2 Examples of succession	432
9.4.3 Predictive models for plant succession	446
9.4.4 Synthesis	448
9.5 Conclusion	454
Further reading	455
Chapter 10 Gradients and plant communities: description	

10.1 Introduction	457
10.2 Describing pattern along obvious natural gradients	458
10.3 Multivariate methods for pattern detection	464

CONTENTS

xiii

1	0.3.1	The data matrix	465
1	0.3.2	Measuring similarity	466
1	0.3.3	Ordination techniques	468
1	0.3.4	Ordinations based upon species data	468
1	0.3.5	Ordinations combining species and	
		environmental data	470
1	0.3.6	Functional simplification in ordination	471
10.4 V	/egeta	ation classification	474
1	0.4.1	Phytosociology	475
1	0.4.2	Classification and land management	476
10.5 0	Gradie	ents and communities	485
1	0.5.1	Clements and Gleason	485
1	0.5.2	The temporary victory of the Gleasonian view	486
1	0.5.3	Null models and patterns along gradients	487
10.6 E	Empir	ical studies of pattern along gradients	491
10.7 C	Conclu	usion	500
F	urthe	er Reading	501

Chapter II Diversity

11.1	Introduction	502		
11.2	Large areas have more plant species	502		
11.3	Areas with more kinds of habitat have more species	505		
11.4	Equatorial areas have more species	508		
11.5	Some evolutionary context	514		
	11.5.1 Four key events	514		
	11.5.2 Some characteristics of angiosperms	515		
	11.5.3 Physiological constraints on diversity are			
	likely additive	516		
11.6	Examples of plant species diversity	518		
	11.6.1 Mediterranean climate regions	518		
	11.6.2 Carnivorous plants	520		
	11.6.3 Deciduous forests	522		
	11.6.4 Diversity, biogeography, and the concept			
	of endemism	522		
11.7	Models to describe species diversity at smaller scales	523		
	11.7.1 Intermediate biomass	524		
	11.7.2 Competitive hierarchies	526		
	11.7.3 Intermediate disturbance	527		
	11.7.4 Centrifugal organization	529		
11.8	Relative abundance – dominance, diversity, and			
	evenness	532		
	Laboratory experiments on richness and diversity	539		
	Field experiments on richness and diversity	541		
	Implications for conservation 54			
11.12	Conclusion	546		
	Further reading	547		

xiv

CONTENTS

Chapter 12 Conservation and management	
12.1 Introduction	549
12.2 Some historical context	550
12.2.1 Ancient Assyria	550
12.2.2 Deforestation in Ancient Rome and	
the Mediterranean	551
12.3 Vegetation types at risk	553
12.3.1 The destruction of Louisiana's alluvial forests	553
12.3.2 Islands: Easter Island and the Galapagos	564
12.3.3 Boreal forests	569
12.4 Protection of representative vegetation types	570
12.4.1 Designing reserve systems	570
12.4.2 Hot spots of biological diversity	573
12.4.3 Primary forests	574
12.4.4 Large wetlands	576
12.4.5 New discoveries of species in the Guyana highlands	578
12.4.6 Economic growth, human welfare, and wilderness	580
12.5 Fragmentation of natural landscapes	581
12.5.1 Fens in agricultural landscapes12.5.2 Deciduous forests in agricultural landscapes	582 584
12.5.3 How much is enough?	586
12.5.5 How much is enough? 12.6 Function, management, and thresholds	588
12.6.1 Two perspectives	588
12.6.2 Plant communities are dynamic	588
12.6.3 Ecological footprints for human cities	593
12.6.4 Thresholds	595
12.7 Restoration	599
12.8 Indicators	602
12.9 Conclusion	604
Further reading	608
0	
Questions for Review	610
References	612
Index	667
Enrichment Boxes	007
Box 1.1 The biosphere	3
Box 2.1 A man of his times: Alexander von Humboldt	52
Box 3.1 The composition and origin of the atmosphere	66
Box 3.2 Fritz Haber changes the global nitrogen cycle	87
Box 3.3 A Darwinian approach to plant traits	104
Box 4.1 The discovery of carnivorous plants	136
Box 5.1 Testing for higher order pattern in competitive	
relationships	207
Box 7.1 Experimental design	312
Box 7.2 A demographic study of the effects of deer	
browsing	315

CONTENTS |

Box 8.1 The discovery of mycorrhizae by Bernard Frank	348
Box 9.1 Mr. Hofmeister and the vanishing gametophyte	415
Box 10.1 Getting the history right: null models in ecology	488
Box 10.2 A possible synthesis: Gleason, Clements, and a	
community structure continuum	497
Box 11.1 Diversity indices	534
Box 11.2 Rothamsted, the Park Grass Experiment	536
Box 12.1 Conservation of tropical forest in the Carribean:	
ca. 1650–1950	583
Box 12.2 The sinking of the Rainbow Warrior	606

X۷

Preface

For many years it has been apparent to me that there is a need for a good textbook in plant ecology. This book is aimed at middle to senior level undergraduates. I also hope that it will serve graduate students, fellow professors, and resource managers. Since many of the topics I include were new to me, I assume that they will be new to even relatively advanced readers.

In writing this book, I made two key assumptions regarding the experience of my audience and the availability of introductory biological information. I deliberately wrote for an audience who already had some exposure to both botany and ecology - an audience having had, perhaps, a first semester course in botany and another first semester course in general ecology, or a comprehensive introductory biology course. I assumed my readers would own, or at least would have access to, a basic introductory text in biology. I have not tried to repeat or rewrite such texts and have taken for granted that readers will have a working familiarity with topics in plant biology such as photosynthesis, transpiration, and meiosis. I have also not tried to repeat basic ecological concepts such as primary production, population growth, decomposition, and nutrient cycling, nor provide a broad illustrated summary of biomes. My impression is that such topics are not only well-covered in good biology texts, but are gradually filtering their way even into the elementary school system. I do, however, revisit many basic topics from photosynthesis to nutrient cycling when important aspects need more emphasis - for example, the way early plants changed the composition of the atmosphere, or how humans have altered the nitrogen cycle with the Haber process. Similarly, while I address the general processes that unify grasslands (e.g., competition, grazing, fire, drought), anyone seeking an elementary enumeration of grassland types or basic information about the geographic distribution of individual grassland types will have to go back to an introductory text. For such background, one might choose among an introductory text in botany, an introductory text in ecology, or the outstanding Ecology of World Vegetation (Archibold 1995). I also do not provide a glossary as this is a standard component of introductory texts. Rather than replicating existing textbooks, I have chosen to emphasize unifying topics such as:

- 1. How populations of plants are assembled into communities and ecosystems.
- 2. How plants affect their surroundings, and how they are affected by those surroundings, at scales ranging from millimeters (the rhizosphere) to kilometers (the atmosphere).

xviii PREFACE

- 3. How plants interact with one another, and how they interact with other species, with examples ranging from fungi and worms to tortoises and elephants.
- 4. How plants and plant communities are dispersed along gradients of time and space. Since so much work these days emphasizes small-scale interactions, I have tried to balance this trend with a temporal scale that includes topics often overlooked in "modern" plant ecology and consequently poorly understood by my own students, such as trends in early plant evolution, consequences of catastrophes such as meteor impacts, and responses to continental glaciations. The spatial scale is equally large, and deliberately emphasizes natural sources of variation in plant communities such as gradients of topography, flooding, fire-frequency, soil fertility, and altitude.
- 5. How general models and actual applications both have great value in guiding research and classifying thought. I therefore tried to provide most topics with both a theoretical context (e.g., simple mathematical models), and an applied context (e.g., examples of these ideas being applied to manage real ecosystems). These sections tend to occur toward the end of chapters. On first reading you may, if you wish, skip the sections on theory, or skip the sections on applications, or both, and still receive a workable treatment of plant ecology. I, however, would strongly encourage you to read them, at least on the second time through, as these approaches (theoretical and applied) need not be mutually exclusive, and they enrich the rest of the text.

This is explicitly a book about **plant** ecology. It draws upon and respects the variety and complexity of real plants in real plant communities (Keddy 2005b). I have gone out of my way to add examples from parts of the Earth rarely highlighted - the Guyana highlands of South America, the deserts of South Africa, and islands such as the Galapagos and New Caledonia. I have also made a point of including unusual plants - carnivorous plants, arctic-alpine plants, epiphytic plants, parasitic plants, succulent plants, and plants that attract ant colonies. I have not hesitated to include many unfamiliar plant names. As a student, I found lectures on corn and beans, or on weeds and old fields, to be boring. I wanted to learn about the full diversity of the Earth's plant types, and what determined where they were found. Some reviewers have criticized the manuscript for having insufficient examples from North America, where many college texts are marketed. This was a conscious decision on my part. All college students whatever their country of origin need to know about noteworthy plants and plant communities found in the rest of the world.

After choosing the audience, and deciding that I would write about real plants in real habitats, the third decision was to include the occasional opinion. I assume that by buying a book by a certain

PREFACE

xix

scholar (me, in this case), you wish to benefit from the experience of that scholar. It is traditional to take textbooks and rewrite them with countless referees until all traces of the writer's personality have vanished. This, indeed, was the advice given to my editor, Alan Crowden. It also was the process that another publisher tried to impose upon me. My reaction as a reader was - how boring! My reaction as a writer was - if the committee thinks they are so clever, let them write it themselves. If you want such a book go elsewhere. But before you do, be very clear on one point - all textbooks have enormous amounts of opinion in them. In most cases, that opinion is hidden - that is, the opinion is an act of omission - with bodies of work, ideas, and papers simply ignored. Students are unable to protect themselves from these kinds of hidden opinions (e.g., Wardle 1995, Keddy 2004, 2005a). In this book, there really are no more opinions than in any competing text - it is merely that my opinions are out in the open where you can see them; my opinions are acts of commission. I try to make it clear where my opinions may be particularly strong, but I am not embarrassed by them. Many papers and books in our field that pass for objective science are in fact laden with opinion, political agendas, and ignorance of history. Students using such books and papers have no way of knowing how much mere opinion they are absorbing. Here you do.

The examples I incorporate to illustrate the topics covered are drawn from work conducted over the last hundred years, including studies by long dead scholars and other scholars whom I know only from reading their work. I provide many suggestions for additional reading, including lists at the end of each chapter – I invite students to broaden their perspective and to seek out original sources. It is not a matter of who you know – it is a matter of who you have read. One referee thought that I cited too much old work – I am of the opinion that too much important old work is being ignored making students (and their professors) vulnerable to false claims of novelty. I would like nothing more than to stimulate a student to go to the library and read old and new work by other scholars. Trust no one, and certainly not me. Read it for yourself.

If there is one other philosophy that guides this book, it is the need to seek general relationships while respecting the details (Keddy 1987, 1994, 2005b). In any field there is a risk that one may become so fascinated by detail that one is unable to relate to any coherent set of principles for summarizing the detail, or for extending them to new situations. At the other extreme, there are monographs written by physicists or zoologists regarding computer models – treatises that are so far removed from botanical reality that they mislead students into thinking that superficial assumptions are a substitute for knowledge about plants. I have tried to ride the razor's edge (or perhaps the enormous valley) between the two – combining respect for the detail (e.g., Figures 4.31, 5.2, 7.11, 8.11) with respect for scientific generalities (e.g., Figures 3.5, 6.3, 7.23, 12.26).

xx

PREFACE

One obstacle to the synthesis of general relationships in ecology is the development of myriad factions, each emphasizing a different view of the discipline. For example, there is a school of phytosociology, a school of plant demography, a school exploring the multivariate techniques of ordination and classification, a school focussed upon mineral nutrition, a school that uses molecular techniques to explore phylogenetic patterns, a school that emphasizes field experiments, and a school studying theoretical models. Superimposed upon this are the schools that organize themselves by habitat, such as wetland ecologists, foresters, desert ecologists, grassland ecologists, and agronomists. Given all these subdivisions of plant ecology, finding generality is challenging. Indeed, any attempt at unification seems to be interpreted as a threat to the importance of each school.

My scientific philosophy is rooted in the pragmatic tradition (e.g., James 1907, Keddy 2001, 2005b). I strove to find unifying principles that organize the mass of botanical data that exist today. Some principles may be well-established, others may be more speculative, and I hope that I have made this distinction clear. Further, I try to emphasize that the search for general principles and their strict testing provide both a unifying framework for the discipline and a means of scientific progress. Without a unifying framework, and without an emphasis upon the experimental testing of hypotheses, plant ecology will stagnate (perhaps wither is a better term). We will then lose the best minds to other *apparently* more exciting fields and be left with second-rate minds recycling secondrate ideas.

My objective is to write a text that provides a unified perspective of plant ecology, while including a variety of frames of reference and taking the best from each. No doubt experienced scholars will find inadequacies in their focal areas. I ask them to consider the scope of the discipline that I have covered. Further, anticipating such views, let me suggest that the balance provided is a strength of this book – I do not belong to any one school (I have worked in a range of them), I do not identify with a single habitat (although I confess to having written a book on wetland ecology), and I do not have a small circle of friends whom I intend to cultivate by citing their work to the exclusion of others. Indeed, chronic illness has tended to isolate me for the past 15 years, and from such isolation comes a certain distance and therefore perhaps, a clearer perspective. Hermits and monks have even been thought to obtain wisdom from such isolation.

Will instructors want to use this book in their courses? Or, as some referees suggested, is it too demanding for undergraduates? I am of the opinion that students come to university to learn topics in depth and breadth, and therefore we short-change them when we fail to challenge them sufficiently. If you believe your class to be insufficiently versed in topics such as photosynthesis, transpiration, meiosis or biomes, include these topics in your lectures and guide students through the chapters they find more difficult. Other instructors using this book may prefer to work through chapter by chapter, having

PREFACE

xxi

students read one chapter each week, and perhaps requiring extra reading for each chapter from the current literature and from papers prior to 1970. Students should be encouraged to visit the library in addition to using the internet to obtain literature. To assist with this process, I have included a set of recommended readings at the end of each chapter. I further suggest instructors add a personal perspective, drawing upon their own experiences in plant ecology. Encourage students to get out in the field and to identify local plants. Emphasize the importance of clear testing of conflicting hypotheses. Raise the topic of the enormous number of plants facing extinction. Remind students that this is a living discipline where bright young minds can make a difference.

My message to students is straightforward: get on with the development of plant ecology. Learn something about the history of your discipline. Learn to identify plants. Buy a good field guide and a magnifying glass. Travel to wild places. Learn about the areas you visit. Find a good ecologist to train you. Do not get involved in political games or one-upmanship. Show respect for those who have gone before by reading their work and thinking about their ideas. Enjoy yourselves. Contribute something to society.

Acknowledgements

I thank the many colleagues who contributed the original research that I have drawn upon for this book. Some of you I still know only from your writing, but that perhaps is the way it should be. I have greatly appreciated the many permissions to reproduce drawings and photographs, and authors' efforts to send originals and notify me of changes. Not every contributor is mentioned here, but the origins of each drawing and photo are clearly stated. Ian Keddy provided considerable assistance, manipulating files in multiple formats to create and adjust illustrations. In addition, line drawings by Howard Coneybeare appear courtesy of Friends of Algonquin Park, line drawings by Rochelle Lawson were borrowed from Wetland Ecology: Principles and Conservation, and Betsy Brigham contributed several new illustrations. Cheryl Cundell greatly assisted with compiling the first version of the manuscript. Jennifer Tynes helped with updating permissions. Over the years I have talked with many colleagues about this project, and may not always be aware of important ideas borrowed from them. Early input from Evan Weiher was most helpful. Sara Tenney and Alan Crowden provided solid editorial advice. Recent input from the following was much appreciated: Peter Bellingham, Walter Judd, Walter Larcher, Craig Loehle, Tiffany McFalls, Rick Miller, and Susan Wiser. The librarians at Southeastern Louisiana University provided steady support with many interlibrary loans. Throughout this lengthy process, Cathy Keddy provided encouragement and editorial services beyond compare.